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Abstract 

The effects of Amazon deforestation have been simulated with a coupled general 

circulation model (GCM). The deforestation influences the global tropics, and in 

particular leads to significantly enhanced El Niño /Southern Oscillation (ENSO) 

variability. Diagnostic experiments with the coupled GCM are conducted to examine if 

changes in the coupled variability can be traced to the changes over the ocean found in an 

Amazon deforestation experiment done with climatological SST forcing of the 

atmospheric GCM. The diagnostic experiments indicate that the mechanism for the 

enhanced ENSO variability is that changes in the land surface properties cause changes in 

the mean surface wind stress in the tropical Pacific. These wind stress changes destabilize 

the mean state of the coupled system, and ENSO variability increases.  

The response of a simple Gill-type atmospheric model to the deforestation 

induced precipitation and surface temperature anomalies from the atmospheric GCM 

simulations is found. These indicate that the westerly wind stress anomalies over the far 

eastern Pacific are forced by the warmer surface temperatures over the deforested region 

rather than the reduced precipitation. Diagnoses with an intermediate coupled model of 

the tropical Pacific suggest that the wind stress anomalies over the far eastern Pacific are 

particularly important for destabilizing the mean state, and also that changes in the 

“weather noise” forcing are probably not important in enhancing the ENSO variability. 
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1. Introduction 

We describe a long simulation of the response of the climate system to Amazon 

deforestation using a coupled general circulation model (CGCM), which indicates that 

Amazon deforestation could have a significant impact on ENSO (El Niño /Southern 

Oscillation) variability, and hence on the climate of the global tropics. Simulations of the 

potential effects of Amazon deforestation on climate have previously been made 

assuming that the sea surface temperature (SST) has no response (e.g. Henderson-Sellers 

and Gornitz 1984; Dickinson and Henderson-Sellers 1988; Nobre et al. 1991). The 

changes over land in these simulations are dramatic, including strong warming, 

exceeding 3°C, and pronounced changes in the precipitation patterns over the deforested 

areas. The effects are fairly consistent between different models, although uncertainties in 

the properties of deforested lands can lead to variations in the climate response (Dirmeyer 

and Shukla 1994, Sud et al. 1996). There has been some theoretical activity towards 

understanding the roles of the various mechanisms (e.g., Zeng and Neelin 1999).  

There have been few publications reporting the effect of deforestation in coupled 

ocean-atmosphere models. Delire et al. (2001) have simulated the effects of Indonesian 

deforestation with a coupled atmosphere-ocean model of intermediate complexity, 

finding some effects on the surrounding ocean. Voldoire and Royer (2005) have 

conducted 20 year simulations of the effects of deforestation of the global tropics in a 

CGCM. Their simulation found statistically significant effects of deforestation on the 

mean climate over the tropical oceans, some of which will be described below. However, 

their simulations were not long enough to detect changes in coupled climate variability 

on ENSO time scales. Here, a simulation of the response of the climate system to 
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Amazon deforestation is carried out for 100 years, which is perhaps long enough to detect 

changes in ENSO variability. 

In an experiment to examine the sensitivity of coupled climate variability to land 

surface processes, described by Bhatt et al. (2002), an unconstrained  CGCM control 

simulation was compared with a simulation in which the soil moisture was globally 

specified to be that of the control climatology. The object was to reduce variability over 

land and to see the impact of this effect on the global climate. In the constrained soil 

moisture experiment, variability decreased over land as expected. Additionally, the 

tropical land surface had less precipitation (especially South America) and was cooler, 

and ENSO variability decreased. Hu et al. (2004) related the decrease in ENSO 

variability to an unphysical behavior which caused the tropical land surface to be an 

energy sink when the soil moisture was specified. Using an intermediate coupled model 

of the tropical Pacific (ICM) for diagnosis, they found that that the changes in the mean 

state over the tropical Pacific, in particular the mean wind stress, were probably more 

important than the decrease in the land surface variability in leading to the decrease in the 

ENSO variability. Although the mean state changes occurred because of problems with 

the experiment, the results suggest that there is a potential mechanism for changes in 

tropical land surface properties to affect tropical SST variability. Those results motivate 

the experiments described here, which evaluate the effects of a more physically based 

change to the land surface boundary conditions in simulations in which land surface 

energy conservation is not violated.    

We find pronounced changes (significant at the 5% level) in the ENSO related 

SST variability between the deforested and control coupled simulations, but it is not clear 
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from the simulations alone by what mechanism deforesting the Amazon affects SST 

variability across the tropical Pacific. In the broadest sense, there are two mechanisms 

that have been suggested to influence ENSO variability. The first mechanism is that 

changes in the structure of the mean state cause changes in the stability of the coupled 

ocean-atmosphere system. Some potential effects of this mechanism are explored by Jin 

and Neelin (1993a, 1993b) and Fedorov and Philander (2001) in simplified models. The 

effects of mean state stability on ENSO variability are that 1) if the mean state is stable, 

ENSO variability will not occur spontaneously, and 2) if the mean state is unstable, 

ENSO variability will occur. In the unstable case, the variability can be either periodic or 

chaotic, depending on model formulation and parameters. Small changes in the external 

forcing of the system can then cause pronounced changes in the character of ENSO 

variability by forcing stable or unstable mean states and concurrent suppression or 

enhancement of the variability (e.g. the effect of changing the seasonal distribution of 

incident solar radiation in Clement et al. 2001). The second mechanism is stochastic 

forcing of the coupled system by noise associated with atmospheric fluctuations for 

which coupled dynamics are unimportant (“weather noise”). The response to the weather 

noise depends crucially on the stability of the mean state (Flügel et al. 2004 and 

references therein). When the mean state is stable or neutral, weather noise can stimulate 

ENSO variability where none would otherwise exist. When the mean state is unstable, the 

effects of noise can be more subtle. 

In the COLA anomaly coupled CGCM, ENSO is a self sustaining oscillation 

whose properties are not crucially dependent on noise forcing, either from the atmosphere 

or the ocean. This has been shown using the “interactive ensemble” approach described 
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by Kirtman and Shukla (2002). In that study, an ensemble of six copies of the AGCM, all 

started from different initial conditions, is anomaly coupled to the OGCM (the 

“interactive ensemble” approach). Each copy of the AGCM sees the OGCM SSTA as it 

evolves, and the fluxes forcing the OGCM are the ensemble mean anomalies from the 

AGCMs. The interactive ensemble simulation procedure filters the atmospheric weather 

noise from the forcing of the OGCM. The ENSO variability in the interactive ensemble is 

nearly as large as in the anomaly coupled CGCM, with a similar spatial structure and 

period (2.5 to 3 years). If the weather noise forcing was crucial, the ENSO variance 

would have been reduced by a factor of 6, as noted by Wu et al. (2004). The interactive 

ensemble has been generalized to couple an ensemble of six copies of the OGCM with 

uncorrelated ocean internal noise to the AGCM ensemble. The SSTA seen by each of the 

AGCMs is then the ensemble mean from the OGCMs. The ENSO variability in the 

generalized interactive ensemble is essentially the same as that found with the single 

OGCM, showing that ocean internal noise forcing is not crucial for ENSO in the anomaly 

coupled CGCM either, and proving that it is a self-sustaining internal oscillation (see 

Kirtman et al., 2005).  

In order to narrow down the mechanisms by which Amazon deforestation affects 

ENSO variability in our simulations, we have performed a number of additional 

experiments with the CGCM, the AGCM component of the CGCM, a simplified 

atmospheric model, and an ICM. Diagnostic experiments are carried out with the CGCM 

to determine whether changes in the mean atmospheric fluxes over the ocean induced by 

the deforestation in the absence of atmosphere-ocean coupling can explain the change in 

ENSO in the coupled system. The CGCM diagnosis indicates that seemingly small 
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changes in the climatological wind stress over the tropical Pacific induced by the 

deforestation are able to stimulate the enhanced ENSO variability and associated larger 

changes in the mean state, while tropical Pacific heat flux changes induced by the 

deforestation are not. Diagnosis with the simplified atmospheric model point to 

regionally specific roles of the surface warming and deep convective heating changes due 

to deforestation in producing the wind stress changes. Diagnoses using the ICM point to 

enhanced instability of the mean state near the South American coast as the underlying 

mechanism, and suggest that changes in the weather noise forcing are not important. 

We describe the CGCM and diagnostic models in Section 2, results from the 

CGCM deforestation experiment, including biases in the control simulation in Section 3, 

the CGCM diagnosis in Section 4, the simple model diagnoses in Section 5, and 

conclusions in Section 6.  

2. Models and experimental design 

The coupled GCM used in the experiments is the COLA anomaly coupled GCM 

(Kirtman et al. 2002). Brief descriptions of the atmospheric GCM, ocean GCM, land 

model, anomaly coupling strategy, and experimental design are given in this section.  

a. Atmospheric GCM 

The atmospheric model is version 2 of the COLA AGCM. The model physics is 

described in Schneider (2002). The dynamical core is from the NCAR(National Center 

for Atmospheric Research) CCM3 (Community Climate Model version 3), now known as 

CAM1 (Community Atmospheric Model version 1), described in Kiehl et al. (1998). The 

horizontal discretization is spectral and the vertical coordinate is sigma (pressure divided 

by surface pressure), and the resolution for this investigation is T42 with 18 vertical 
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levels. The parameterization of the solar radiation is after Briegleb (1992) and terrestrial 

radiation follows Harshvardhan et al. (1987), and includes a realistic evolution of the 

Earth’s orbital parameters (Marx 2001). The deep convection is an implementation of the 

relaxed Arakawa–Schubert scheme of Moorthi and Suarez (1992) described by DeWitt 

(1996). The convective cloud fraction follows the scheme used by the NCAR CCM 

(Kiehl et al. 1994; DeWitt and Schneider 1996). There is a turbulent closure scheme for 

the subgrid-scale exchange of heat, momentum, and moisture as in Miyakoda and Sirutis 

(1977) and Mellor and Yamada (1982, level 2.0). 

b. Ocean GCM 

The ocean model is the Geophysical Fluid Dynamics Laboratory (GFDL) 

Modular Ocean Model version 3 (MOM3), described by Pacanowski and Griffies (1998), 

a finite-difference treatment of the primitive equations of motion using the Boussinesq 

and hydrostatic approximations in spherical coordinates. The zonal resolution of the 

ocean model is 1.5°, and the meridional grid spacing is 0.5° between 10°S and 10°N, 

gradually increasing to 1.5° at 30°N and 30°S and fixed at 1.5° in the extratropics. There 

are 25 levels in the vertical with 17 levels in the upper 450 m. The domain is that of the 

World Ocean between 74°S and 65°N. The coastline and bottom topography are realistic 

except that ocean depths less than 100 m are set to 100 m and the maximum depth is set 

to 6000 m. The artificial high-latitude meridional boundaries are impermeable and 

insulating. The vertical mixing scheme is the non-local K-profile parameterization of 

Large et al. (1994). The horizontal mixing of tracers and momentum is Laplacian. The 

momentum mixing uses the space-time dependent scheme of Smagorinsky (1963) and the 
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tracer mixing uses Redi (1982) diffusion along with Gent and McWilliams (1990) quasi-

adiabatic stirring. 

c. Land model 

The land surface model is an updated version of the simplified Simple Biosphere 

model (SSiB; Xue et al. 1991, 1996) as described by Dirmeyer and Zeng (1999). SSiB is 

a typical second-generation land surface scheme (closed energy and water budget but no 

simulation of the carbon cycle) and has three soil layers: a thin surface layer of fixed 

depth, a root zone of 0.5 to 2.5m depending on vegetation type, and a deep recharge zone. 

The surface energy budget of the canopy and soil are treated separately. Independent data 

sets of global vegetation types and soil parameters are used, with a specified mean annual 

cycle of vegetation properties based on observations. A sub-grid precipitation 

interception scheme and canopy interception/re-evaporation are incorporated for more 

realistic surface hydrology. However, recharge of soil moisture from the water table 

below the third soil layer is not included, nor is surface liquid water storage (e.g. from 

floodplain inundation).  

d. Coupling 

The CGCM uses the anomaly coupling strategy (closely related to flux 

correction), which is applied at the air-sea interface in order to keep the control climate 

close to the observed (Kirtman et al. 1997; Kirtman et al. 2002). All current state-of-the-

art CGCMs suffer to some extent from severe tropical biases and unrealistic 

characteristics of ENSO variability. These biases are described for the COLA CGCM in 

Schneider (2002) and Kirtman et al. (2002). The rationale behind the use of anomaly 

coupling is that the coupled variability, especially with regard to ENSO, is expected from 
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the theoretical studies cited in the Introduction, as well as many others, to depend 

crucially on the simulation of the climatological mean state, including the annual cycle. A 

realistic simulation of the climatological states of the atmospheric and ocean and the 

fluxes between them is then a necessary but not sufficient condition for a realistic 

simulation of the ENSO variability. Anomaly coupling is a partial fix that addresses only 

SST and the surface fluxes, and greatly reduces the biases in these, but does not address 

the underlying causes of the biases in the models’ physics and numerics, which are 

undoubtedly still important in biasing the internal atmosphere and ocean climatologies as 

well as the anomalies.  

In anomaly coupling, the atmospheric GCM is forced by the observed 

climatological SST plus the anomaly of the ocean model’s SST from the OGCM 

climatology. Similarly, the SST is the OGCM response to the observed climatological 

fluxes of heat, momentum and freshwater plus the atmospheric anomalous fluxes with 

respect to the AGCM climatology. The ocean and atmosphere models exchange daily 

mean fluxes of heat, momentum, and freshwater and SST once a day. No additional 

empirical corrections are applied to any of the exchanged anomalies. Also, there is no 

coupling of simulated terrestrial runoff to the ocean model. 

This coupling constrains the CGCM climatological SST, including the annual 

cycle, as seen by the atmosphere, to be close to the observed in control simulations, and 

similarly constrains the climatological wind stress, heat flux, and fresh water flux as seen 

by the ocean. Note that the SST produced by the ocean is not constrained to be close to 

the observed. Even if the fluxes forcing the ocean have no biases, the OGCM will 

produce biases in the SST due to inaccuracies in the ocean model, and similar comments 
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apply to the atmospheric fluxes. The variability of the CGCM is not constrained 

explicitly by the anomaly coupling. 

The component model climatologies are defined by separate uncoupled extended 

simulations of the ocean and atmospheric models. In the case of the atmosphere, the 

model climatology is computed from a 30-yr (1961–90) integration with observed 

specified SST. This SST is also used to define the observed SST climatology. The 

observed SST dataset is described in Smith et al. (1996). In the case of the ocean model 

SST climatology, an extended uncoupled ocean model simulation is made using 30 yr of 

1000-mb NCEP–NCAR reanalysis winds. The NCEP–NCAR winds are converted to a 

wind stress following Trenberth et al. (1990). As with the SST, this observed wind stress 

product is used to define the observed momentum flux climatology. The heat flux and the 

freshwater flux in this ocean-only simulation are parameterized using damping of SST 

and sea surface salinity to observed conditions with a 100-day timescale. The heat and 

freshwater flux ‘‘observed’’ climatologies are then calculated from the results of the 

extended ocean-only simulation. 

The anomaly coupling framework provides a useful tool for carrying out 

controlled diagnostic experiments, such as those that are described in Sec. 5. Changes 

made in the climatological fluxes provided to the ocean will produce SST anomalies that 

project on the climatological fields, effectively producing a new climatological SST. This 

could then lead to changes in the variability, and perhaps further changes in the 

climatological SST. 
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e. Experimental procedure 

 The control simulation, CONTROL, started with the astronomical parameters of 

Jan. 1, 2000 after a 50 year spin-up of the ocean made with climatological stresses. The 

Amazon deforestation experiment DEFOREST was initialized at the Jan. 1, 2100 state of 

CONTROL. In DEFOREST, the vegetation in the Amazon region (shaded area in Fig. 

3b), tropical rain forest, was replaced by the savanna vegetation type. This change results 

in a decrease of root depth from 2.5 m to 1.0 m, a reduction in canopy height from 35m to 

1m with a concomitant decrease in roughness length and displacement height, an overall 

decrease in leaf area index and greenness, increased net surface albedo, and the 

introduction of intra-annual variations of vegetation properties synchronized with the 

mean wet and dry seasons. The replacement area represents a complete deforestation of 

the Amazon. This extreme and probably unrealistic scenario is appropriate for a first 

sensitivity and mechanistic study of the potential effect on the coupled climate system. 

The period of the analysis is from Jan. 1, 2100 to Dec. 31, 2199 for both simulations. The 

5% level is chosen to test for significance. Names and descriptions of CGCM 

experiments are listed in Table 1.  

f. Diagnostic models 

The atmospheric component of the model of Zebiak and Cane (1987) is used to 

examine the steady atmospheric response to forcing by heating. This model is based on 

the work of Gill (1980). The model is also used to find the response to imposed surface 

temperatures, using the isomorphism between the Gill model and the Lindzen and Nigam 

(1987) model described by Neelin (1989). 
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We also use an ICM  of the tropical Pacific for diagnosis (Kirtman 1997, Hu et al. 

2004). It consists of a statistical atmosphere coupled to the ocean component of the 

model of Zebiak and Cane (1987). The ocean model domain is 130°E-84°W, 19°S-19°N. 

The SST equation determines the evolution of the SSTA, essentially linearized about the 

climatological annual cycle of SST, thermocline depth, and current. The statistical 

atmosphere is derived by simultaneous regression of the 1964-94 observed NINO3 SSTA 

onto the Florida State University analyzed surface wind stress (Goldenberg and O’Brien, 

1981). The wind stress thus has a time independent spatial structure. The heat flux is 

chosen to damp the SSTA. Parameters and basic state fields are chosen to model the 

observed tropical Pacific. With these choices, the ENSO variability in the ICM is exactly 

periodic with a period of about four years. The ICM is not entirely consistent with the 

CGCM, since the statistical model is of the real atmosphere rather than the CGCM 

atmosphere, the thermocline properties are taken from the real ocean, rather than the 

CGCM ocean, and the eastern boundary of the ICM ocean basin is at a constant longitude 

rather than following the South American coastline. However, there is some 

correspondence between the responses of the ICM and the CGCM to similar anomalous 

forcing, as will be discussed below. The ICM diagnoses should then be interpreted as 

suggestive rather than definitive. 

3. Results 

In the following, we will refer to the SST variability in the equatorial Pacific as 

“ENSO.” Properties of ENSO in the CONTROL and DEFOREST are summarized by the 

variability of NINO3.4. The rainfall and surface temperature simulation of CONTROL in 
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the Amazon region is compared to the observed and to DEFOREST. Then the 

geographical distribution of the response to the deforestation is described. 

a. NINO3.4 SSTA 

Figure 1 shows 100 years of monthly mean observed HadSST (Rayner et al., 

1996; top panel) and simulated (bottom panel) NINO3.4 SST variability. The standard 

deviation of the NINO3.4 SSTA is 0.59°C in CONTROL, which is about 20% smaller 

than the 0.75°C value found in observations over 1900-1999 (but closer to the observed 

value of 0.66°C over the 1900-1970 period). The standard deviation of the NINO3.4 

SSTA in DEFOREST is 0.66°C. The difference between the CONTROL and 

DEFOREST variances is significantly different from zero at the 5% level. The number of 

degrees of freedom used in the significance level calculation (257) was estimated from 

the autocorrelation time of the simulated NINO3.4 SSTA in CONTROL (approximately 

6 months).  

The power spectra of the NINO3.4 SSTA have also been calculated (not shown). 

The observed spectrum has a well known single prominent peak with a period of about 4-

5 years. The simulations have most of their power at interannual to decadal periods, with 

peaks near 3 and 8 years in CONTROL and near 3 and 6 years in DEFOREST. There do 

not appear to be significant differences between the ENSO periods in CONTROL and 

DEFOREST. 

b. Land surface biases and response 

While anomaly coupling constrains the CONTROL simulation climatological 

SST to be close to the observed, the land surface is unconstrained by artificial 

corrections, and can therefore develop biases. The climatological annual cycles of the 
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precipitation and surface air temperature from the simulations and analyses of 

observations over the land region 80°W-40°W and 15°S-8°N, which contains the 

deforested region, are shown in Fig. 2. The analysis climatologies are obtained from 

CMAP (CPC Merged Analysis of Precipitation), 1979-2003 (Xie and Arkin 1996) for 

precipitation, and from CAMS  (Climate Anomaly Monitoring System), 1946-2003 

(Ropelewski et al. 1985) for surface air temperature. It is obvious that CONTROL has 

significant biases, in that precipitation (Fig. 2a) is too low (annual mean 2.3 mm day-1 for 

CONTROL, 5.0 mm day-1 for CMAP), and surface air temperature (Fig. 2b) too high 

(annual mean 25.6°C for CONTROL, 24.9°C for CAMS). The biases are especially 

pronounced in the rainy seasons, with CONTROL precipitation only 1/3 of CMAP, and 

surface air temperatures too warm by almost 2°C. These COLA model biases have been 

discussed by Misra et al. (2003) for the COLA AGCM, and are similar to those found in 

the coupled simulations described by Voldoire and Royer (2005). These biases need to be 

kept in mind in interpreting the results. 

Amazon deforestation leads to a reduction in the area mean precipitation (annual 

mean reduction 0.3 mm day-1) and a warming in the surface air temperature (annual mean 

higher by 1.8°C) for DEFOREST relative to CONTROL, as shown in Fig. 2. 

c. Structure of anomalies  

The ENSO simulation of CONTROL was compared to observations and to a 

directly coupled simulation in Kirtman et al. (2002). While the amplitude of the 

equatorial SST anomalies is reasonable in CONTROL, the strong SST anomalies (Fig. 

3a) are too narrowly confined to the equatorial region, especially in the eastern Pacific, 

and also extend too far into the western Pacific. Without anomaly coupling, Kirtman et 
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al. (2002) found that the ENSO structure was too strongly confined to the eastern Pacific, 

due to biases in the mean state. 

A comparison of CGCM simulations (Latif et al. 2001) found that an earlier 

version of this model (the baseline COLA CGCM described in Schneider 2002) produced 

one of the better simulations of the observed ENSO period of approximately four years. 

The current version differs from the previous one primarily in that in the current version 

1) the AGCM horizontal resolution is T42 (previously T30), 2) the OGCM is MOM3 

(previously MOM2) and has different physical parameterizations but similar resolution.  

Figure 3b shows the sensitivity of the SST variability. Deforestation leads to 

enhancement of model's ENSO-related SST anomalies in the equatorial Pacific by about 

20% in the region of strongest variability (significantly different from zero at the 5% 

level). SST variability is also enhanced in the tropical Atlantic.  

Along with the changes in SST variability, the mean SST (Fig. 3c) in the 

equatorial and south-equatorial eastern Pacific also changes. This structure of the mean 

SST change, with warming in the equatorial central and eastern Pacific, has also been 

found in some simulations of the effects of increasing greenhouse gases, where it has 

been referred to as “El Niño-like” warming (Meehl and Washington, 1996) because it 

resembles the structure of SST anomalies during an El Niño event (warm phase of 

ENSO). The atmospheric mean state also changes toward a more El Niño-like 

configuration, with displacement of precipitation from the western towards the central 

Pacific and a more westerly surface wind stress in the central and eastern equatorial 

Pacific (Fig. 3d). The Amazon region is substantially drier in the deforested simulation, 

as would be expected from the specified SST deforestation simulations. The small scale 
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structures in the unsmoothed precipitation anomalies over South America are fixed to 

surface features. This spatially spotty behavior is a property of the COLA AGCM. The 

equatorial Atlantic is slightly cooler in DEFOREST, coinciding with more easterly 

surface wind stress and reduced precipitation.  

Warm anomalies in the eastern Pacific are also shown by Voldoire and Royer 

(2005) in DJF and JJA (their figures 9b and 10b, respectively). They also find a similar 

pattern of annual mean precipitation anomalies (their Fig. 13d: positive in the central and 

eastern Pacific, negative in the Atlantic, and negative over the Amazon. 

4.  Diagnostic GCM simulations 

It is difficult to determine cause and effect in the coupled simulations, since 

coupled feedbacks between the atmosphere and ocean have an important influence in the 

results of the experiments. It would seem reasonable to hope that the underlying cause for 

the changes in the CGCM is present in AGCM control and deforestation simulations 

forced by climatological SST. We have devised a procedure incorporating the AGCM 

deforestation response into the CGCM with CONTROL vegetation in order to test which, 

if any, of the deforestation-induced changes in surface flux is responsible for the changes 

in the ENSO variability.  

a. AGCM forced by climatological SST 

We conducted 28 year control and deforestation simulations using the AGCM 

forced by the climatological annual cycle of SST, 1971-2000, from the Smith et al. 

(1996)  analysis. The biases in the AGCM control simulation are close to those found in 

the CGCM CONTROL, which is expected since the CONTROL SST is bias-corrected to 

be close to the HadSST climatology.  The sensitivities of  surface temperature and 
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precipitation over the land region as in Fig. 2 are close to those found with the CGCM. 

Changes in the fluxes of heat, momentum, and fresh water over the oceanic regions were 

saved for use in the diagnostic coupled simulations described below. The sensitivity of 

the “weather noise” in the surface fluxes to deforestation was also evaluated in the 

climatological SST simulations for use in diagnostic simulations. The weather noise for a 

simulation was taken to be the variability in the surface fluxes after its climatological 

annual cycle was removed.  

Strong warming over the Amazon is found, as in previous studies such as those 

referred to in the Introduction. Deforestation leads to generally decreased precipitation in 

the Amazon, but enhanced precipitation in the surrounding regions (Fig. 4). The 

precipitation sensitivity over the Amazon is very similar to that found in the CGCM in 

DEFOREST minus CONTROL, including the small scale features. This is a 

demonstration that the precipitation sensitivity of the coupled simulation is highly 

deterministic and predictable, and not “noise,” despite the lack of spatial coherence. It 

also shows that the land response is not changed by coupling to the ocean, as in Voldoire 

and Royer (2005). Deforestation produces the change in the surface wind stress over the 

ocean as shown in Fig. 4. There are easterlies over the tropical central Pacific, but with a 

stronger magnitude off than on the equator. Also, there are equatorial westerlies in the far 

eastern Pacific connecting cyclonic vortices to the north and south of the equator. The 

wind stress anomalies are substantially weaker than those found in the coupled 

simulation. Aside from the amplitude, the climatological SST forced and CGCM wind 

stress patterns have similar structures in the low latitude eastern Pacific as well as the 

western Atlantic. There is also increased heat flux into the ocean in the eastern Pacific 
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(not shown). The changes over the ocean produced by the Amazon deforestation in the 

uncoupled AGCM simulation will be referred to as the “deforestation forcing” of the 

ocean. 

b. Diagnostic CGCM simulations  

The annual mean deforestation forcing is then added to the fluxes provided to the 

ocean in CGCM simulations with CONTROL vegetation (i.e. without Amazon 

deforestation). This flux correction represents the forcing of the ocean by the 

deforestation before the coupled feedbacks come into play. The CGCM simulations test 

whether the coupled feedbacks will then amplify the deforestation forcing and produce 

the effects similar to those seen in DEFOREST. Two experiments were performed, one 

using only the heat flux deforestation forcing, and the other with only the momentum flux 

deforestation forcing (denoted WIND). Both experiments applied the deforestation 

forcing globally. Simulations of 40 years were carried out from identical initial 

conditions and the final 30 years were analyzed. When the heat flux shown was added to 

the climatological heat flux, there was no significant change in the mean state SST or 

ENSO variability. However, adding the deforestation forcing mean wind stress changes 

of Fig. 4 leads to the WIND anomalies relative to CONTROL shown in Fig. 5.  

In the tropical Pacific the WIND anomalies are very similar to those found in 

DEFOREST. There is enhanced equatorial SST variability in both the central Pacific and 

near the South American coast (Fig. 5a). The anomalies are actually somewhat stronger 

than those in DEFOREST, so that despite the reduction in the length of simulation and  

degrees of freedom in WIND, the significant regions have similar areas in Figs. 3b and 

5a. Changes in the mean state also closely resemble those found in DEFOREST. There 
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are El Niño-like mean SST changes in the Pacific and cooling in the Atlantic (Fig. 5b) 

similar to those shown in Fig. 3c, although changes in the mean SST are more closely 

confined to the equator than those found in DEFOREST. Annual mean precipitation is 

higher over the central and eastern equatorial Pacific and lower in the western equatorial 

Pacific. Changes in the wind stress (Fig. 5c, arrows), have similar structure and 

magnitude to those shown in Fig. 3d. Changes in the tropical Atlantic (Fig. 5) mean state 

and variability are also induced by both deforestation wind stress forcing in WIND and 

Amazon deforestation in DEFOREST. 

Note in Fig. 5c that the annual mean precipitation changes over the Amazon are 

very small in WIND. The vegetation is the same in both WIND and CONTROL. Only 

the forcing of the ocean is different. The lack of change in Amazon precipitation induced 

by forcing the over the ocean in another demonstration that there is little feedback back to 

the land from the changes in the ocean mean state.  

These results suggests elements of a mechanism for the enhanced SST variability 

and the mean state changes. Amazon deforestation directly causes small but physically 

significant changes in the mean wind stress over the equatorial Pacific. These changes in 

the mean wind stress destabilize the coupled system, leading to enhanced SST variability 

and, through coupled feedbacks, larger changes in the structure of the coupled mean state. 

5. Diagnoses with simpler models 

 There are several gaps in the argument connecting deforestation → mean wind 

stress forcing → enhanced ENSO variability that need to be filled in. In particular:  

a. How does the deforestation produce the deforestation wind stress forcing? 
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b. Which aspects of the deforestation wind stress forcing are important to 

initiate the changes in the coupled system? 

c. What is the role of noise forcing? 

It is also important to evaluate the robustness of the various mechanisms, as it is possible 

that at least some aspects of the results may be model dependent, especially given the 

biases in the model’s mean state. These issues are addressed below. 

a. Surface wind response to Amazon deforestation 

The WIND experiment isolates an important cause of the enhanced ENSO 

variability in DEFOREST to be the annual mean surface wind stress anomalies produced 

by deforestation as identified in the AGCM-only deforestation simulation. As mentioned 

in Sec. 4a, the annual mean surface wind stress anomalies produced in the AGCM-only 

deforestation simulation has equatorial easterlies in the Atlantic and anticyclonic 

circulations symmetric about the equator, with equatorial westerlies, in the far eastern 

Pacific. This structure is reminiscent of surface response of the Gill (1980) model 

expected for an isolated heat source located in equatorial South America.  

In order to further analyze this response, the simple Gill-type steady linear 

atmospheric model described in Sec. 2f was used to diagnose the surface response to the 

precipitation (representing convective heating) and surface temperature anomalies from 

the AGCM-only simulation. Following Neelin (1989), the model used for the response to 

heating has mechanical and thermal damping coefficients of (2 days)-1, while thermal 

damping time is reduced to (30 minutes) -1 for surface temperature forcing to represent 

the Lindzen and Nigam (1987) boundary layer model. Also, the equivalent depth is 

reduced by a factor of ten for surface temperature forcing, which represents a boundary 



 22

layer depth of 3000 m. While the Lindzen and Nigam model has been used extensively 

when forced by SST, we are not aware of applications diagnosing the atmospheric 

response to land surface temperatures. However, the argument used to derive the model, 

that the surface pressure “boundary layers” in the tropics, and that the appropriate 

boundary layer depth is more or less a constant throughout, which is justified both 

theoretically from Ekman layer theory (Schneider and Lindzen, 1976) and 

observationally, applies equally well over ocean or land.  

Note that over land, specific humidity variations may be important in evaluating 

pressure gradients. Then it is appropriate to use virtual rather than absolute surface 

temperature to force the model, but we have not done that here. 

The surface wind responses of the diagnostic model to anomalies found in the 

AGCM-only deforestation minus control simulations are shown in Fig. 6.  The figure 

shows the normalized responses (both u and v normalized independently) to deforestation 

minus control atmospheric heating anomalies (Fig. 6a), taken proportional to the annual 

mean precipitation anomalies, and to deforestation minus control annual mean surface 

temperature anomalies (Fig. 6b). The deforestation minus control surface wind stress 

anomalies found in the AGCM simulations are also shown (Fig. 6c), where the stresses 

on land have been multiplied by 0.1 and those on ocean by 10 in order for the vector 

lengths over land and ocean to be comparable. Zonal means are removed. 

Since there is a reduction of precipitation over the Amazon due to deforestation, 

the precipitation forced surface winds diverge there in response (in the Gill model this is 

seen from the u-component). Additionally, the surface winds are easterly over the 

equatorial Pacific and westerly over the equatorial Atlantic near South America. This 
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response appears to coincide reasonably well with the divergent AGCM response over 

land, and possibly also in the Atlantic south of the equator. The AGCM response to the 

west of 110°W is also similar to the response to the precipitation forcing. However, the 

response to precipitation cannot explain the westerly response to deforestation in the 

eastern Pacific or the easterlies in the equatorial western Atlantic found in the AGCM 

simulations. 

Consider next the response to the increased Amazon surface temperature due to 

the deforestation in Fig. 6b. The surface temperature forcing over the ocean is zero, since 

both the control and deforestation AGCM-only simulations are forced by climatological 

SST. Thus the forcing is due only to the land surface temperature response, and the 

response over the oceans is entirely a remote response to the land surface temperature 

forcing. In contrast to the response to heating, this response is convergent over the land. 

Also, the response is westerly over the eastern equatorial Pacific and easterly over the 

western equatorial Atlantic, similar to the AGCM response. 

The simple model diagnosis then suggests that the wind response over the 

equatorial eastern Pacific can be attributed to the remote response to the land surface 

temperature anomalies caused by the deforestation. This response cannot be explained by 

the response to condensation heating (e.g. deep convection), since that response has the 

wrong sign. It is reasonable to expect that this westerly response should be a robust 

feature of AGCM-only Amazon deforestation simulations, as far as the warming response 

to deforestation is robust. 

Other features of the simple model diagnosis are also worth noting. Using a linear 

model to diagnose AGCM simulations, Dewitt et al. (1996) found that boundary layer 
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convergence forced by condensation heating and that forced by boundary layer diffusion 

(corresponding to surface temperature forcing here) were 180 degrees out of phase over 

land, but reinforced each other over ocean. Here, we have found the same result over land 

from our linear model diagnosis. The mechanism for this relationship in the AGCM 

clearly involves feedbacks between precipitation and surface temperature that are present 

over land (small heat capacity, evaporation dependent on soil moisture) but not ocean 

(large heat capacity, potential evaporation). The diagnosis indicates that over the Atlantic, 

the easterly responses to both forcings reinforce south of the equator, with asymmetry of 

the zonal wind about the equator attributable to the precipitation forcing. In the Atlantic 

north of the equator, the responses compete, with the surface temperature forcing winning 

out near the coast. The response to surface temperature decays with increasing distance 

from South America, while the response to deep convective heating does not. This is in 

part due to the smaller equivalent depth (and smaller scale of influence) appropriate for 

the surface temperature forcing interpretation, and in part due to the localization of the 

surface temperature forcing to South America. 

b. ICM response to deforestation mean wind anomalies 

Adding the annual mean wind stress anomaly of DEFOREST (Fig. 3d) to the 

climatological wind stress forcing in the ICM leads to a pronounced enhancement of its 

ENSO variability. This indicates that the ICM interprets the changes in the CGCM mean 

wind as being associated with a more unstable mean state. Since the DEFOREST annual 

mean wind anomalies have already been amplified by coupled feedbacks from those 

produced in the AGCM-only simulation, this result is not directly relevant to 
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understanding the cause of the larger ENSO variability, but it provides some justification 

for using the ICM as a tool for preliminary testing of mechanisms, as in Hu et al. (2004). 

The analogous experiment to WIND was conducted with the ICM. That is, the 

AGCM-only deforestation minus control annual mean wind stress anomalies were added 

to the climatological background state. The result of this experiment was that the ENSO 

variability was eliminated, that is the mean state became stable, which does not agree 

with the results from the CGCM experiments. It is clear at least from this result that the 

ICM mean state is close to a boundary between stable and unstable regimes, and lies on 

the unstable side. Additional experiments were conducted applying the deforestation 

annual mean wind stress anomalies from various geographical regions. When the region 

was taken to be 90°-84°W and 5°-11°S, on the edge of the ICM domain near to the South 

American coast (close to the NINO1 region 90°-80°W and 5°-10°S), the ICM produced 

enhanced ENSO variability. The ENSO variability did not change when the forcing was 

applied in corresponding region to the north of the equator. Thus, while the ICM results 

are not entirely consistent with those from the CGCM, the ICM suggests that the region 

between the South American coast and 90°W and south of the equator, some of which is 

outside the domain of the ICM, may be a key region for destabilizing the coupled system 

via the deforestation-induced mean wind changes. The results from the linear 

atmospheric model indicate that surface temperature anomalies produced by Amazon 

deforestation have their strongest influence in this region, which is at least consistent with 

this conjecture.  
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c. The role of noise forcing 

It is also possible that enhanced stochastic forcing by atmospheric “weather 

noise” could be forcing stronger low frequency ENSO variability, in a variant of the 

random walk mechanism (i.e. Flugel et al. 2004). The enhanced ENSO variability could 

then lead to an El Niño-like warming by acting as a mixing agent and smoothing the east-

west SST gradient, which in turn would force El Niño-like changes in the atmospheric 

wind stress and precipitation fields (Schopf and Burgman 2006). This possibility was 

tested by forcing the ICM with climatological mean state with the “weather noise” wind 

stress produced in the deforestation and control climatological SST AGCM-only 

simulations. The weather noise was taken to be the time series of the AGCM wind stress 

with the annual cycle removed. The result from this experiment was negative: as in the 

ICM diagnosis in Hu et al. (2004) there was no difference in ENSO variability between 

the two simulations. 

6. Conclusion 

Some of the sensitivities of the COLA anomaly coupled CGCM to Amazon 

deforestation were described. Effects on the Amazon rainfall and surface temperature are 

similar to those found in AGCM-only simulation. Over ocean the Amazon deforestation 

leads to enhanced ENSO variability and annual mean warming in the eastern equatorial 

Pacific.  

According to our diagnostic simulations, the mechanism by which deforestation 

causes the enhanced ENSO variability and mean state changes begins with the effects on 

surface temperature, with the deforested regions experiencing warmer surface 

temperatures. The surface warming leads to changes in the surface winds which extend 
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well into the Pacific and Atlantic, and affect in particular the annual mean wind stress on 

the ocean, with westerly anomalies in the far eastern Pacific and easterlies in the Atlantic. 

In the Pacific, the westerly anomalies lead to warm SST anomalies, probably due to 

reduced upwelling. These anomalies are amplified and modified by coupled feedbacks, 

and the coupled ocean-atmosphere system responds with warming in the annual mean 

SST in the eastern equatorial Pacific, a state which is more unstable to ENSO SST 

variability in this CGCM.  

The properties of the wind stress changes produced directly by the deforestation 

which are responsible for the changes in the coupled climate are not obvious by 

inspection. Experiments with an ICM indicate that the key region in which the wind 

stress is influenced by the deforestation may be close to the NINO1 region, possibly 

extending eastward to the South American coast. The simplest models (Fedorov and 

Philander 2001) do not address the structures found in the AGCM simulation. It is 

possible that the stability results could be model dependent. It would therefore be 

interesting to repeat the deforestation experiment with other CGCMs. Also, Amazon 

deforestation may be leading to strong seasonal effects in the CGCM that have not been 

addressed due to considering only the annual mean. These should be documented and 

analyzed. 

The CGCM suffers from substantial biases in both the ENSO simulation and the 

climatology in the Amazon regions, so that results presented here may not be 

generalizable to other CGCMs. Our diagnosis indicates that the effects of Amazon 

deforestation in warming the local surface temperature and reducing precipitation 

produce responses of opposite sign on the zonal wind stress in the eastern equatorial 
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Pacific, and that the surface temperature effect wins out. If the CGCM climatology in the 

Amazon region was more realistic (cooler and wetter), the response to the precipitation 

anomalies could become relatively more important, potentially leading to results of 

opposite sign. 

We speculate that the mechanism described in this paper could be relevant to 

some outstanding problems. First is the problem of biases in the tropical SST simulations 

of CGCMs. Warm SST in the eastern tropical Pacific along the South American coast is a 

well known bias (e.g. Davey et al., 2001), as is cold SST in the western tropical Pacific, 

and too little precipitation over the Amazon is also frequently found. A similar SST bias 

is also common in the Atlantic (Davey et al., 2001): warm along the African coast and 

cold in the western equatorial Atlantic. The warm bias is highly asymmetric about the 

equator, with maximum bias to the south. If there was a warm bias in the land surface 

temperature in the adjacent continental area, this could contribute to the warm bias in the 

SST by inducing westerlies in the eastern oceans as in Fig. 6b, warming the SST by 

reducing upwelling, with subsequent coupled feedbacks. On the other hand, the opposite 

effect could occur in the ocean on the eastern side of the warm land, possibly leading to 

cold biases in the western equatorial ocean basins (e.g. Fig. 3c). That is, tropical biases 

over land could be in part responsible for tropical biases in SST in CGCMs. The strength 

of this mechanism could be tested by artificially cooling tropical land surface 

temperatures, for example by applying a flux correction over land. While the magnitude 

of the eastern tropical Pacific warming in our deforestation experiments is small 

compared to the biases, it should be remembered that the mean ocean state of our model 

is constrained by a strong form of flux correction. 
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Another interesting phenomenon is the El Niño-like warming found in some 

CGCM simulations of greenhouse warming. It is well known that simulated warming at a 

constant longitude tends to be larger over land than over ocean in greenhouse warming 

simulations. This phenomenon occurs at all latitudes. The El Niño-like warming could 

then be a consequence of westerlies in the eastern tropical Pacific forced by the 

preferential warming in tropical South America.   
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Table 1.  Experiments  

Experiment Name Description 

CONTROL CGCM control (100 years) 

DEFOREST CGCM Amazon deforestation (100 years) 

WIND Annual mean wind stress anomalies from AGCM-only Amazon 
deforestation simulation added to CGCM with CONTROL 

vegetation (40 years) 
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Figure 1. NINO3.4 (170°W-120°W, 5°S-5°N) SSTA. Top: observed (top); bottom: 
CONTROL (green), and DEFOREST (red) simulations.  
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a) 

Figure 2. Climatological means over land from 80°W-40°W and 15°S-8°N. which 
contains the deforested region for analysis (black), CONTROL (green), and DEFOREST 
(red). (a) Precipitation (mm day-1). (b) Surface temperature (K).  
 

b)
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Figure 3. Effects of Amazon deforestation on the coupled climate from 100 years of 
simulation. (a) Standard deviation of CONTROL SST anomalies (°C). (b) Difference of 
standard deviations of SST anomalies, DEFOREST minus CONTROL. Colored regions 
are significant at the 5% level. Deforested region is indicated in grey. (c) Annual mean 
SST difference (°C), DEFOREST minus CONTROL. (d) Difference in annual mean 
precipitation (shaded, mm day-1) and wind stress on the ocean (vectors, dynes cm-2), 
DEFOREST minus CONTROL. 
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Figure 4. Annual mean effects of Amazon deforestation (deforestation minus control) 
in AGCM simulations with specified climatological SST. Precipitation (, shaded, mm 
day-1) and wind stress on the ocean (vectors, dynes cm-2). 
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Figure 5. Sensitivity of the coupled climate to addition of the wind stress anomaly 
from Fig. 4 in 30 years of simulation  WIND, demonstrating that the origins of 
the oceanic impacts of deforesting the region shown in Fig. 3b are contained in 
the mean wind stress differences of the AGCM only simulations. (a) Difference 
of standard deviations of SST anomalies. Colored regions are significant at the 
5% level. (b) Annual mean SST difference (°C). (d) Difference in annual mean 
precipitation (shaded, mm day-1) and wind stress on the ocean (vectors, dynes 
cm-2). 



 41

 

Figure 6. Scaled surface wind response, deforest minus control, of simple Gill-type 
model to forcing obtained from the AGCM-only simulations with specified 
climatological SST. (a) Forcing by precipitation anomalies shown in Fig. 4, 
representing atmospheric heating. (b) Forcing by land surface temperature 
anomalies. (c) Response from AGCM simulations. Shading represents the zonal 
component. See text for details. 
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